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Formulas are derived for the resolution limits of migration-data kernels associated with diving waves, primary
reflections, diffractions, andmultiple reflections. They are applicable to images formed by reverse timemigration
(RTM), least squares migration (LSM), and full waveform inversion (FWI), and suggest a multiscale approach to
iterative FWI based on multiscale physics. That is, at the early stages of the inversion, events that only generate
low-wavenumber resolution should be emphasized relative to the high-wavenumber resolution events. As the
iterations proceed, the higher-resolution events should be emphasized. The formulas also suggest that inverting
multiples can provide some low- and intermediate-wavenumber components of the velocitymodel not available
in the primaries. Finally, diffractions can provide twice or better the resolution than specular reflections for com-
parable depths of the reflector and diffractor. The width of the diffraction–transmission wavepath is approxi-
mately λ at the diffractor location for the diffraction–transmission wavepath.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

FWI (Lailly, 1984; Tarantola, 1984, 2005), RTM (Baysal et al., 1983;
McMechan, 1983; Whitmore, 1983), LSM (Dai et al., 2012; Duquet
et al., 2000; Nemeth et al., 1999; Tang, 2009) and wave-equation
traveltime inversion (De Hoop and van Der Hilst, 2005; Luo, 1991; Luo
and Schuster, 1991;Woodward, 1989, 1992) are important tools for im-
aging seismic data at the engineering (Buddensiek et al., 2008), explora-
tion (Krebs et al., 2009; Mora, 1988, 1989; Pica et al., 1990; Pratt and
Goulty, 1991; Shin and Cha, 2008; Virieux and Operto, 2009; Zhou
et al., 1995) and earthquake (De Hoop and van Der Hilst, 2005;
Fichtner, 2011; Fichtner and Trampert, 2011a,b; Fichtner et al., 2009;
Marquering et al., 1999; Tape et al., 2009; Tong et al., 1998; Van Der
Hilst and Maarten, 2005) scales. In all of the above methods, the wave
equation is inverted to estimate the model that minimizes, in some
sense, the difference between the predicted and observed data. The
main value of these wave equation-based imaging methods is that
they overcome the high-frequency assumption of ray-based methods
and use many, if not all, of the arrivals to reconstruct a finely detailed
earth model. The hope is to find models with spatial resolution of one-
half wavelength, and perhaps even better if evanescent energy can be
exploited (de Fornel, 2001; Fink, 2008; Schuster et al., 2012). The
aveform inversion; FZ, Fresnel
e migration.
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ang),
main limitations of wave equation imaging are computational cost
and extensive preprocessing of the data, compared to the ray-based
methods.

To optimize the use of wave equation imaging onemust understand
its limits of spatial resolution. Without this understanding, models can
be over parameterized and lead to solutions that honor the data but
violate the wavelength-based resolution limits of wave propagation.
Suchmodels should be avoided in our attempts to understand the earth.

In the last 30 years, there has beenmuchprogress inmathematically
defining the resolution limits of seismic images. The two most impor-
tant categories of seismic imaging and their resolution limits are for
traveltime tomography and reflection imaging.

1.1. Resolution limits for traveltime tomography

In raypath traveltime tomography, the velocity is updated only along
the raypath that connects the source at swith the receiver at g, whereas
in finite-frequency travel time tomography, velocity updates can be
confined to the first Fresnel zone for the specified source–receiver pair
(Harlan, 1990). He states, “band-limited waves can follow paths that
are not Fermat raypaths and still cover the distance between two points
in almost the same time. All arrivingwaves that are delayed by less than
half a wavelength will add constructively to the first arrival.”

As an example, the raypaths and Fresnel zones for reflection and
transmission arrivals are illustrated in Fig 1. A point x is in the FZ if
and only if it satisfies the following condition (Cerveny and Soares,
1992; Kravtsov and Orlov, 1990):

jτsx þ τxg−τsgj ≤T=2; ð1Þ
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Fig. 1. a) First Fresnel zones for the specular reflection and for the transmission arrival excited by themirror source at (0,2d). In the latter case, the velocity model below the reflector (the
thick horizontal line denoted by F) has been extended to be themirror-reflection of the velocity model above the reflector. Colored layers denote the possibility that the velocity model is
multilayered, instead of homogeneous. In this case, although the Fresnel zone is not an ellipse, the horizontal resolution can be computed approximately involving the RMS velocity vRMS

(see Appendix A). b) An ellipse intersected by a line segment DE, where its length DE ¼ 2ab
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defines the resolution limit (see Appendix A).
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Fig. 2. Same as Fig. 1 except there is an additional source–receiver pair. Theminimumwidth and height of the shaded intersection zone define, respectively, the effective horizontalΔx and
vertical Δz resolution limits of the traveltime tomogram at .

1 The seismic amplitude is smeared over the thick ellipse shown in Fig. 3a, where the
period T of the trace's source wavelet determines the thickness of the fat ellipse in (x, z)
space; Fig. 3b illustrates that the minimum thickness of the fat ellipse as 0.5λ.
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where, T is the dominant period of the source wavelet, τsx is the
traveltime for a particular type of wave to propagate from s to the trial
image point at x, and τsg is the traveltime to propagate from s to the
specified geophone at g.

In a homogeneous medium, the maximumwidth of the first Fresnel
zone can be shown (Williamson, 1991) to be proportional to

ffiffiffiffiffiffi
λL

p
, where

L is the source–receiver distance and λ is the dominant wavelength.
Thus, widening the distance between the source and receiver lowers
the spatial resolution of the traveltime tomogram. More generally,
Appendix A derives the formula for the length between any two points
on opposite sides of the ellipse, which provides the horizontal resolu-
tion limit for any orientation of the ellipse. In addition, Appendix A
derives the formula for horizontal resolution in multilayered, rather
than homogeneous, media.

The effective spatial resolution limits Δx and Δz of traveltime tomo-
grams can be estimated (Schuster, 1996) as the minimum width and
height of the intersection of first Fresnel zones at the trial image point.
This can be seen by assuming the L2 traveltime misfit J = ∑ iJi, where
Ji denotes the traveltime misfit owing to the ith source–receiver pair,
and assuming model consistency, i.e., there exists a velocity model
that can explain all observed traveltime. If a part of the trial model lies
furthest from the Fresnel zone prescribed by the ith source–receiver
pair, then Ji will dominate and steepest descent updates will propel
this trial model point towards the center of this Fresnel zone. The rule
that the traveltime error is less than T/2 for all source–receiver
pairs defines an intersection of all the individual Fresnel zones. As an ex-
ample, Fig. 2 illustrates the intersection zone for both a) reflection and
b) transmission rays. At any point on the central raypath, the narrowest
width is along the line perpendicular to this ray, which also defines the
direction of best resolution. Thus, a horizontal ray gives the best vertical
resolution while a vertically oriented ray provides the best horizontal reso-
lution for transmission tomography, where the velocity is updated by
smearing residuals along the first FZ (also referred to as a wavepath).
As will be shown in the next section, this rule of thumb is also true for
transmissionwavepaths in FWI tomograms, except thewaveform residual
is smeared along the associated wavepath.

1.2. Resolution limits for reflection imaging

A seismic migration image is formed by taking the reflection energy
arriving at time τsx + τxg and smearing (Claerbout, 1992) it along the
appropriate ellipse in the model-space coordinates x (see Fig. 3a). For
several traces, the migration image in Fig. 3b is formed by smearing1

and summing the reflection energy along the appropriate ellipses in
the model space. It is obvious that the narrowest horizontal slice of the
fat ellipse is for a trial image point at the far left and far right of the ellipse
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Fig. 3.Migration is the smearing and summation of trace amplitudes along the appropriate fat ellipses in (x, z) for each source–receiver pair s− g (Claerbout, 1992).Migration of two traces
in b) has better spatial resolution than migrating just one trace in a), and the minimum thickness of each fat ellipse is 0.5λ, where T is the dominant period of the source wavelet.
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to give the best horizontal resolution in the reflection migration image.We
also see that the narrowest vertical slice is directly beneath the midpoint of
the source–receiver pair to give the best vertical resolution. For post-stack
data, these resolution limits are given on the right side of Fig. 4e, which
say that the far-offset (near-offset) trace from a trial image point gives
the best horizontal (vertical) resolution.

The resolution limits for migration (Berkhout, 1984; Chen and
Schuster, 1999; Safar, 1985; Vermeer, 1997) are equivalent to those
for linearized inversion in a homogeneous (Devaney, 1984; Wu and
Toksoz, 1987) and an inhomogeneous medium (Beylkin, 1985) with
smooth velocity variations. The key idea is that the model wavenumber
vector k can be equated to the sum of the source–scatterer and geo-
phone–scatterer wavenumbers k ¼ ksro þ kgro shown in Fig. 5. If D
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Fig. 4.Migration-data kernels, associated wavepaths, and approximate resolution limits along t
the raypaths associatedwith the conjugated kernels; the solid lineswith arrows in the second co
are represented by •; the diffractor in (d) is denoted by ; and the resolution limit perpendicular
for post-stack data, where X corresponds to aperture width, and Δx and Δz correspond to the s
defines the range of wavenumbers available from the source–receiver
positions, then the horizontalΔx and verticalΔz spatial resolution limits
of the migration image are defined as
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" #
:

ð2Þ
In the far-field approximation, these limits are given in Fig. 4e for

post-stack migration.
The above resolution analysis has been developed for migration and

traveltime tomography. Until now, there has not been a comprehensive
treatment of the resolution limits associatedwith LSM.We now present
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3 There are two steps for creating an upgoing reflection wavepath: first, generate the

migration image and use the reflectors as exploding sources that explode at the traveltime
from the source to the reflector. Then,fire off these exploding reflectors to get the upgoing
reflection fields U(x, t). The upgoing rabbit ear wavepath is computed by taking the zero-
lag correlation between U(x, t) and the backpropagated data B(x, t).
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Fig. 5. Scatterer at ro = (x, z) where the sum of the dashed source–scatterer ksro and geo-
phone–scatterer wavenumbers kgro is equal to the recoverable model wavenumber k.
Solid rays define the central raypath.
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such an analysis by applying an asymptotic analysis to the model reso-
lution function for LSM. The resulting resolution formulas can be used to
better understand and optimize the resolution characteristics of FWI,
LSM, and RTM.

This paper is divided into three parts. The introduction heuristi-
cally explains how wavepaths are used to estimate resolution for
both traveltime tomography and migration. This leads to an intuitive
description of spatial resolution as the minimumwidth and height of
the intersection of Fresnel zones at the trial image point. The next
part validates this heuristic definition by rigorously deriving the res-
olution limits for each type of wavepath, and explains their relation-
ship to the acquisition geometry. Finally, a discussion and summary
are given.

2. Born forward and adjoint modeling

The model resolution function L†L is a product of forward L and ad-
joint L† modeling operators under the Born approximation (Stolt and
Benson, 1986). We now define the equations for these modeling
operators.

2.1. Born forward modeling

The trace d(g|s) excited by a harmonic point source at s and recorded
by a geophone at g is given by the Born modeling equation:

δd gð jsÞ ¼ ω2
Z

Ω
G gjxð Þδm xð ÞG xjsð Þdx2→δd ¼ Lδm; ð3Þ

where G(g|x) is the Helmholtz Green's function for the background
velocity model, the model function perturbed from the background
model is given by δm(x) = 2δs(x)s(x) → δm, s(x) is the background
slowness model, δs(x) is the perturbation of the slowness field, and ω
is the angular frequency. For notational economy, this equation can be
represented in operator notation by δd = Lδm, where δd represents
the scattered seismic field δd(g|s) under the weak scattering approxi-
mation, L represents the integral operator, andΩ defines the integration
points in the model region.

The integration in Eq. (3) is over the entire model space, but if the
trace is windowed about a specific event then the integration can be ap-
proximated by that over the event's first Fresnel zone associated with
the specific source–receiver pair. For example, if the trace only contains
the transmitted arrival, thenΩ=Ωtrans. defines the points in the yellow
colored wavepath in Fig. 4a of the diving wave's first Fresnel zone; only
velocity perturbations in this zone will significantly affect the character
of the diving wave arrival in the trace.

2.2. Born adjoint modeling

Eq. (3) can be inverted by the iterative steepest descent formula

δm xð Þkþ1 ¼ δm xð Þk−α δm xð Þmig
; ð4Þ

where the misfit gradient δm(x)mig is given by the Born adjoint model-
ing equation

δm xð Þmig ¼ ω2
Z

D
G gjxð Þ�G xjsð Þ�δd gjsð Þdxgdxs→δmmig ¼ L†δd; ð5Þ

and the integration of points in D is over the range of the horizontal
source and receiver coordinates along the horizontal recording line
at z= 0. Here, δd(g|s) = d(g|s)− d(g|s)obs, L† represents the adjoint
of the modeling operator L, the step length is denoted by α, d(g|s) is
the trace predicted from the estimated slowness model, and the ob-
served trace is represented by d(g|s)obs. The misfit gradient symbol
δm(x)mig is superscripted by mig because it also represents the
migration of the residual. In fact, the first iteration k=0 of Eq. (5) rep-
resents the reverse timemigration of the scattered data recorded at the
surface.

If the windowed event is the reflection, Eq. (5) says that the velocity
model is updated by smearing the residual2 along the yellow colored
rabbit ears3 in Fig. 4b–c and the yellow ellipse in Fig. 4e. Smearing resid-
uals along the rabbit ears (ellipse) with the b–c (e) migration kernel
updates the low-wavenumber (high-wavenumber) portion of the veloc-
ity model (Liu et al., 2011; Mora, 1989; Zhou et al., 1995). The spatial
resolution limits Δx and Δz associated with any point along the central
rays are determined by the, respectively, horizontal and vertical widths
of the first Fresnel zone.

3. Model resolution function and FWI resolution limits

In the Introduction, the model resolution limits were defined for
traveltime transmission tomography and reflection migration, where
λ is considered as the dominant wavelength. For a band-limited source
wavelet, the dominant wavelength is typically associated with the peak
frequency. Now the model resolution limits will be derived for FWI by
applying asymptotic analysis to the model resolution function that
relates the model δm to the reconstructed image δmmig. Note in passing
that in practice, FWI is typically carried out in multiscale (Bunks et al.,
1995; Sirgue and Pratt, 2004) such that at a given stage, FWI only con-
cerns the source wavelet filtered into a narrowband. In this case, the per-
tinent λ still belongs to the peak frequency of the narrowband source. In
contrast, LSM is carried outwith the original band-limited sourcewavelet.
Because the inversion process of LSM tends to deconvolve the source
wavelet, the resolution limits are defined asymptotically by the λ asso-
ciated with the upper cutoff frequency of the source wavelet.
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3.1. Model resolution equation: mmig = L†Lm

The forward and adjoint modeling equations can be combined to
give the equation for model resolution, i.e., plugging Eq. (3) into Eq. (5)
gives

δm xð Þmig ¼ ω4
Z

D
G gjxð ÞG xjsð Þ½ ��
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{migration kernel Z

Ω
G gjyð ÞG yjsð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{data kernel

δm yð Þdy2dxgdxs; ð6Þ

or in more compact notation

δmmig ¼ L†Lδm: ð7Þ

The kernel for the operator L†L is related to the model resolution ma-
trix (Menke, 1989) and is interpreted as the point spread function
(Schuster and Hu, 2000) similar to that used in optics, except here, if
δm(y) = δ(y− ro), it is the migration response to a point slowness per-
turbation in themodel at ro. The ideal response to a point slowness anom-
aly is the same point with perfect resolution.

For a two-layer medium, the above Green's function can be decom-
posed into its direct and reflection components:

G gð jxÞ ¼ G gjxð Þdir þ G gjxð Þrfl;
G sð jxÞ ¼ G sjxð Þdir þ G sjxð Þrfl;

ð8Þ

where G(g|x)dir andG(g|x)rfl are, respectively, the Green's function for the
direct wave and upgoing reflection in the upper layer. Inserting Eq. (8)
into the migration kernel in Eq. (6) results in the five migration kernels
shown in Fig. 4, each of which is used to smear residuals along one of
the five yellow colored wavepaths (Liu et al., 2011; Zhan et al., 2014).

3.1.1. Reflection migration
Reflectionmigration smears residuals along the yellow colored ellipse

in Fig. 4e for a specified source and receiver pair. When two traces are
migrated, Fig. 3b suggests that the minimum width and height of the
intersecting fat ellipses define the resolution limits of reflectionmigration.

The formulas for migration resolution limits were more rigorously
derived (Beylkin, 1985) by applying the migration kernel to traces that
only contain thediffraction arrival froma single diffractor. For a localized
scatterer4 in a background medium with smooth velocity variations,
Eq. (6) asymptotically becomes the Fourier integral over the model
wavenumbers kx and kz:

δm xð Þmig ¼ α
Z

D
e−ik�xδM kð Þ J−1dkxdkz; ð9Þ

where α is related to geometrical spreading, J is the Jacobian, which is
derived in Appendix C, and the range of model wavenumbersD in the in-
tegral depends on the range of source–receiver pairs. In fact, the model
wavenumber vector k can be equated to the sum of the source–scatterer
and geophone–scatterer wavenumbers k ¼ kgro

þ ksro
shown in Fig. 5.

We will now show how Eqs. (6) and (9) can be used to estimate the res-
olution limits of the other wavepaths in Fig. 4a–d.

3.1.2. Diving wave transmission
Migration of the divingwave residual along the yellow transmission

wavepath in Fig. 4a provides the low-wavenumber velocity update for
waveform inversion (Mora, 1989; Zhou et al., 1995), or wave equation
traveltime inversion (Luo and Schuster, 1991; Woodward, 1989, 1992)
if the trace residual is replaced by the recorded trace weighted by the
traveltime residual. The boundary of the first Fresnel zone wavepath5 is
4 Wewill assume a 2Dmodelwhere the “point” source and scatterer are equivalent to a
line source and a line scatterer, with no field variations along the y-axis.

5 Dahlen (2004) refers to the shape of a diving wavepath as a banana.
defined by values of x for the delayed diving wave time τsgdive + T/2 =
τsx + τxg, where τsgdive is the diving wave traveltime at the geophone loca-
tion g. As illustrated in Fig. 2b, the minimum width and height of the
intersecting fat ellipses define the effective resolution limits of transmis-
sion tomography (Williamson, 1991) or transmission migration (Sheley
and Schuster, 2003).

More rigorously, Appendix B shows that themodel resolution Eq. (6)
for diving waves can be transformed into the Fourier integral

δm xð Þmig ¼ α
Z

Dro

e−ik�xδM kð Þ J−1dkxdkz; ð10Þ

where α is a term related to geometrical spreading and Dro
defines the

range of source–geophone pairs whose first Fresnel zone wavepaths
visit the scatterer localized at ro. The formulas for resolution limits are
the same as in Eq. (2), except D is replaced by Dro

.
The range of allowable source–geophone pairs (see Sheng and

Schuster, 2003) in Dro is illustrated in Fig. 6b, where only the sources
between the blue and red stars will contribute to the slowness update
around the scatterer point at ro. This differs from the Fourier integral
in Eq. (9) for diffraction imaging where all source–geophone pairs con-
tribute to the integration domain inD for a recorded diffraction. Hence,
the resolution limits formigrating transmission residualswith the kernel
[G(g|x)dirG(x|s)dir]* should be worse thanmigrating diffraction residuals
with the same kernel.

The precise connection between intersecting wavepaths in Fig. 2b,
the range of available wavenumbers, and resolution limits in Eq. (2)
can be made by assuming a homogeneous medium. In this case, Fig. 7
shows that the half-width Δz of the first Fresnel zone at the point mid-
way between the source and geophone is equal to

Δz ¼
ffiffiffiffiffiffiffiffiffiffiffi
Lλ=4

p
; ð11Þ

where L is the distance between the source and geophone, which is equal
to that given by Eq. (2). It also shows that Δz is inversely proportional to
the sum of the source–scatterer and geophone–scatterer wavenumbers,
implying thatmin 1/kz is equivalent to finding thewidth of thewavepath
intersections in Fig. 2b.

For a single source–geophone pair, the best direction of transmission
spatial resolution for a slowness anomaly midway between the source
and geophone is perpendicular to the central ray. This means that a slow-
ness anomaly moved perpendicular to the ray from the central ray
would lead to the most noticeable change in the transmission arrival.
The worst direction of spatial resolution is along the ray itself because
the slowness anomaly can be slid along it without changing the
traveltime; moreover, the model wavenumber k = ksx + kxg is zero
all along the transmission central ray.

3.1.3. Reflection–transmission
Migrating the reflection arrival with any of the kernels in the first

column of Fig. 4b–c leads to the low-wavenumber velocity update
along the rabbit-ear wavepaths in Fig. 4b–c or Fig. 1a.

The corresponding resolution formula for the rightmost rabbit-ear
wavepath is

δm xð Þmig ¼ ω4
Z

Dro

G gjxð ÞdirG xjsð Þrefl
h i�Z

Ωgs

G gjyð ÞdirG sjyð Þrefl δm yð Þdy2dxgdxs;

ð12Þ
and, as before, can be analyzed for the resolution limits. However, now
the asymptotic Green's functions for the transmitted arrival G(g|x)dir

and the reflection field

G xjsð Þrefl ¼ Arefl
sx e−iωτreflsx ; ð13Þ

are plugged into Eq. (12) to give the resolution limits for updating the
velocity by smearing the reflection residual along the rabbit ears.
Here, Asx

refl accounts for amplitude and phase effects from geometrical
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spreading and the reflection coefficient; τsxrefl is the time it takes reflec-
tion energy to propagate from the source at s to the listener at x = ro
along the specular dashed raypath in Fig. 1a.

Estimating the resolution limits for the rabbit-ear wavepaths will
result in model resolution formulas similar to that given in Fig. 4a for
transmission imaging. This can be understood without going through
the detailed algebra by recognizing that the upgoing reflection
wavepath (rightmost rabbit ear in Fig. 1a) is identical to the transmis-
sion wavepath in Fig. 1b above the interface. This is denoted as a mirror
transmission wavepath because it coincides with the first Fresnel zone
for a source at the mirror position (0, 2d) in a homogeneous velocity.
Thus, the reflection traveltime in a) is identical to the transmission
traveltime in b) for any receiver at ro. This means that the resolution
limits defined by Eq. (2) are applicable to the transmission wavepaths
in Fig. 1b and the reflection wavepaths in Fig. 1a. However, the range
of available wavenumbers for the traces recorded at g is determined
by the limited range of sources in Fig. 6a that allow for the intersection
of their first Fresnel zones with the scatterer. For example, the resolu-
tion limit 2Δr perpendicular to the ray at the midpoint should be
equal to the2Δr ¼

ffiffiffiffiffiffi
λL

p
in Fig. 1a, except the total length of the reflection

ray is L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 4d2

p
.

3.1.4. Diffraction–transmission
Howdo the resolution characteristics of the diffraction–transmission

wavepaths in Fig. 4d compare to those for the reflection–transmission
wavepaths in Fig. 4b–c? Fig. 8 suggests that the diffraction resolution
limit will be significantly better because the diffraction propagation dis-
tance is effectively halved, leading to a narrower wavepath. This means
Model Wavenumber k for 
Transmission Migration s

.

g

90-φ central ray

ro=(x,z)

φkgro ksro

|k|=4π cosφ/λ

L

z

Fig. 7. Transmission ray and scatterer at ro= (x, z) where x= L/2 for a homogeneousme-
dium.We assume L≫ z and z is equal to the half–width z≈

ffiffiffiffiffiffiffiffiffiffiffi
λL=4

p
of the 1st Fresnel zone

in a homogeneous medium. In this case, cosϕ ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=4þ z2

q
≈2z=L; inserting the half-

width formula gives cosϕ ¼ ffiffiffiffiffiffiffiffi
λ=L

p
so kz = 4π cos ϕ/λ ¼ 4π=

ffiffiffiffiffiffi
Lλ

p
.

that, if the waveform residuals are used to update the velocity, then the
diffraction updates will have significantly better resolution than the
reflection updates.

The resolution limits for diffraction–transmission migration can be
quantified according to Eq. (11), to obtain that themaximum resolution
limits perpendicular to the diffraction and reflection central rays should
be, respectively, 2Δrdiff≈

ffiffiffiffiffiffiffiffiffiffiffi
λL=2

p
and 2Δrrefl≈

ffiffiffiffiffiffi
λL

p
. In this case, L/2 is the

effective length of the central ray between the geophone and the scatterer
in Fig. 8a. These limits can be rigorously derived by defining the diffrac-
tion Green's function G(x|s)diff as

G xjsð Þdiff ¼ Adiff
sxox

e−iω τsxoþτxoxð Þ; ð14Þ

where the diffractor is located at xo, the trial image point is at x, andAdiff
sxox

accounts for the effects of geometrical spreading, reflection amplitude,
and phase changes due to scattering. Replacing the migration kernel
in Eq. (6) by [G(g|x)diffG(x|s)dir]* and the data kernel by [G(g|y)diffG(y|
s)dir], and using the explicit expression for the Green's functions yields
the model resolution function for diffraction imaging:

δm xð Þmig ¼ ω4
Z

D
Adiff
sxox

Agx

h i�Z
Ω
Adiff
sxoy

Agy e
iω τgx−τgyþτxox−τxoyð Þdy2dxgdxs:

ð15Þ

The salient difference between this formula and the one for reflec-
tions in Eq. (B.4) is that τxox and τxoy replace τsx and τsy. This says that
the diffraction wavepath is generated by a “virtual” source at the
diffractor xo rather than at the actual source location s. Hence, the diffrac-
tionwavepath should be thinner than the specular reflectionwavepath in
Fig. 8. In addition, every source–geophone pair has a diffractionwavepath
that intersects the diffractor. Thismeans that, similar to diffractionmigra-
tion, many more diffraction wavenumbers will be available for velocity
updates compared to specular reflection–transmission wavepaths.

3.2. Wavelength imaging at the diffractor

Figs. 4d and8a illustrate that thewidth of the diffraction–transmission
wavepath is proportional to λ at the diffractor location. This can be
mathematically proven by locating the point E on the Fig. 1b ellipse so
that the line through it and the focus at g is perpendicular to the ellipti-
cal axis. The distance between E and g is denoted as Eg. In the far-field
approximation, L≫Eg ¼ zo so we can approximate the ellipse formula
for the first Fresnel zone centering about g as

λ=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2o þ L2

q
þ zo−L≈zo: ð16Þ

This suggests that the resolution limit of the updated velocity model
is about λ near the scatterer, which is much finer than the resolution
limit of

ffiffiffiffiffiffiffiffiffiffiffi
Lλ=4

p
along themiddle of the Fig. 8a wavepath. This unexpect-

edly high-resolution limit near the reflector boundaries can be observed
in wave equation reflection traveltime (Zhang et al., 2012) and tomo-
grams of MVA.
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To illustrate the range of wavenumbers estimated from diffraction
and transmission migration, Fig. 9 depicts the low wavenumbers
(magenta dots) of the model recovered with transmission migration
(see Fig. 7) and the higher wavenumbers (gray dots) recovered by dif-
fraction migration (Fig. 5). Note the large gap between the recovered
low- and high-wavenumber spectra, whichwill be denoted as themiss-
ing intermediate wavenumbers. The absence of such intermediate
model wavenumbers is a serious challenge for waveform inversion,
which will be addressed in the next section.
6 excluding certain multiples such as ghosts that may impair image resolution.
4. Filling in the model spectrum with multiples

The previous sections derived the model resolution equations for
diving waves, primaries, and diffractions. What are the resolution
benefits for migrating multiples,6 particularly prism waves or inter-
bed multiples? The short answer is that their associated central
rays are longer than those of primaries, so their first Fresnel zones should
be wider. This means that they can reconstruct low-wavenumber and
intermediate-wavenumber models that can only be inverted with pri-
maries at impractically wide source–geophone offsets or using sources
with unrealistic low frequencies.
4.1. Lower wavenumber resolution with prism waves and free-surface
multiples

To demonstrate the enhanced wavenumber coverage of multiples,
the point-source response of the yellow vertical reflector in Fig. 10 is
computed by a finite-difference method. The trace is windowed about
the reflections and then migrated by RTM to get the prism wavepath
image (Dai and Schuster, 2013). As the length L of the prism ray gets
longer, the wavepath becomes thicker by

ffiffiffiffiffiffi
λL

p
. In this way, the deep
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prism-reflection wavepath provides lower wavenumber information
about the model compared to primaries. Such low wavenumbers are
at the top of the FWI wish list for providing a good starting model for
subsalt imaging.

Another example is shown in Fig. 11. Here, the prism-wave reflection
in b) achieves the same low-wavenumber resolution as the 1st-order
free-surface multiple in a), but only requires about 1/2 the source–
geophone offset of a). The deeper the reflector for the free-surface mul-
tiple is, the thicker is the wavepath and the lower is the wavenumber in
the estimated model.
4.2. Intermediate-wavenumber resolution with interbed multiples

Fig. 9 illustrates that transmission tomography (smearing residuals
along rabbit ears) fills in the low wavenumber part of the spectrum,
while reflection migration (smearing residuals along ellipse) fills in
the high wavenumbers. Now we show that interbed multiples can fill
in some of the intermediate wavenumbers denoted by the blue dots.

Fig. 12a depicts the interbedmultiple rays for a thin-bedmodel with
a diffractor at the lower interface. Each order of the multiple will be
associated with a different mirror ray, where the depth of the mirror
scatterer deepens with the order of themultiple. Therefore, the raypath
lengthens with order of multiple, and the wavepath thickens as well.
We conclude that the mirror wavepath that intersects the thin bed7

thickens progressively with the order of the multiple, and so should
fill in some of the “intermediate wavenumber” gap (Jannane et al.,
1989) illustrated by the blue dots in Fig. 9.

The above analysis can be quantified as in the previous sections by
analyzing the model resolution function. In this case, the forward
modeling kernelG(g|x)G(x|s) is replaced by one that generates an inter-
nal multiple rather than a direct wave or primary reflection.8 The phase
term in the Green's function will be replaced by a summation of times
corresponding to each leg of the raypaths seen in Fig. 12a. Themigration
kernel is also modified by terms that will image the internal multiple to
one of its bounce points in the thin layer.
5. Discussion and summary

Formulas are derived for the resolution limits of the migration-data
kernels in Fig. 4, as well as those for multiple reflections. They are
7 The sampling interval between wavenumbers associated with each order of multiple
becomes smaller with thinner beds.

8 This kernel corresponds to just one of the terms in the Neumann series expansion of
the Lippmann–Schwinger equation (Stolt and Benson, 1986).
applicable to images formed by RTM, LSM, and FWI. Their salient impli-
cations are the following.

1. Low- and intermediate-wavenumber information about the velocity
distribution is estimated primarily by transmission migration of pri-
maries andmultiples. The intermediatewavenumbers canbe supplied
by interbedmultiples, while the lowerwavenumbers are contained in
deep primaries and free-surface relatedmultiples. Invertingmultiples
can be an opportunity for estimating subsurface velocity information
not available in the primary reflections.

2. Inverting diffractions can provide twice or more the resolution com-
pared to imaging primaries. Smearing residuals along the transmis-
sion wavepath can achieve a resolution of λ near the diffractor. On
the other hand, diffraction energy can be more than an order-of-
magnitude weaker than primary energy, so the diffraction data will
be noisier.

3. Diving waves that bottom out at a certain depth will have a better
vertical resolution than horizontal resolution. Therefore, it is also im-
portant to invert deep reflections to increase both the vertical and
horizontal resolution. Since reflections can be an order-of-magnitude
weaker thandivingwaves, it is recommended that divingwaves befil-
tered from the data after a sufficient number of iterations. This might
constitute an iterativemulti-physics approach to FWI, where inverting
a different type of wavefield should be emphasized at different depths
and iteration numbers.

4. The transmission migration kernels in Fig. 4a–d are of the same type
as their data kernels. This leads to velocity updates along the trans-
mission wavepaths. In contrast, the traditional migration kernel
[G(g|x)dirG(x|s)dir]* in Fig. 4e is a product of two Green's functions
for direct waves, while the data kernel is a product of a reflection
and a direct-wave Green's function. This mismatch in the type of
kernel does not lead to the traditional wavepath where seismic
energy propagates, but gives the migration ellipse, which is the
zone where reflection energy could have originated, i.e., the
interface.

The limitation of this study is that it does not take into account the
non-linear effects of evanescent energy (Fleming, 2008) in determining
resolution. Utilizing evanescent energy with FWI could provide, in the-
ory, resolution much better than λ. It is expected that multiple scatter-
ing arrivals between neighboring sub-wavelength scatterers might
provide the extra resolution needed, but not accounted for in this cur-
rent study.
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Appendix A. Resolution properties of Fresnel volume in constant
and layered media

We first analyze the resolution of the ellipse depicted in Fig. 1b, and
then relate the parameters of this ellipse to an ellipsoid and to those
defining awavepath. Lastly,we examine the case ofmultilayeredmedia.

The spatial resolution limit near the point c in Fig. 1b is related to the
reciprocal of the segment length DE. This length can be determined by
noting that the end points D and E satisfy both the equations of the
ellipse and the line, written as

x2

a2
þ y2

b2
¼ 1; ðA:1Þ

y ¼ tanθ x−cð Þ; ðA:2Þ

where a and b are themajor and minor radii of the ellipse, respectively,
and θ is the angle DE makes with the axis of the ellipse. Eqs. (A.1) and
(A.2) can be reduced to a quadratic equation of one variable y, yielding
two roots yD and yE. The distance DE is then obtained as

DE ¼ yD−yEj j
sinθj j ;

¼
2ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 cos2θþ a2−c2

� 	
sin2θ

r
b2 cos2θþ a2 sin2θ:

ðA:3Þ

Two special cases of c and θ are immediately verified. We haveDE ¼
2awhen θ=0, andDE ¼ 2bwhen c=0 and θ= π/2, i.e., the lengths of
the major and the minor axes of the ellipse, respectively.

In a homogeneous and isotropic medium, the Fresnel volume is a
prolate spheroid, which is an ellipsoid that is rotationally symmetric
around themajor axis sg depicted in Fig. 1b. Therefore, Eq. (A.3) remains
invariant with respect to this rotation. For an arbitrary line of intersec-
tion passing through themajor axis, the steps to calculate the resolution
are: (1) to find the intercept c and the angle θ as depicted in Figs. 1b, and
(2) to use eq. (A.3) for the resolution calculation.

Next, the parameters a and b of the ellipse are related to those defin-
ing the first Fresnel zone, as depicted in Fig. 1a. Let s and g be the two foci
of the ellipse, the distance between s and g be L, and E be an arbitrary
point on the ellipse. The first Fresnel zone is delimited by points E on
the ellipse that satisfy

sE þ Eg ¼ Lþ λ
2
: ðA:4Þ

Also; sE þ Eg ¼ 2a ðA:5Þ
is a property of the ellipse. Another property of the ellipse relates the focal
distance to the major and minor radii by

L ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−b2

p
: ðA:6Þ

Eqs. (A.4)–(A.6) give us

a ¼ L
2
þ λ

4
; ðA:7Þ

and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λL
4

þ λ2

16

s
: ðA:8Þ

In the limit of L ≫ λ, b→ 1
2

ffiffiffiffiffiffi
λL

p
.

From Eqs. (A.7), (A.8), and (A.3), we see that the resolution can be
written as DE L;λ; c; θð Þ, a function of wavepath parameters L, λ, and in-
tersection parameters c and θ.

Lastly, in the case of multilayered media, as denoted by the brown
lines in Fig. 1a, we rewrite Eq. (A.4) in terms of traveltimes (cf.
Eq. (1)) as

τsE þ τEg ¼ τsg þ T=2: ðA:9Þ

Here, the traveltimes can be computed approximately using theRMS
velocity for N layers defined by

vRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i

v2i Δτi

XN
i

Δτi

;

vuuuuuuut ðA:10Þ

where Δτi is the vertical 1-way time through the ith layer. Note that in
Fig. 1a, the vRMS sensed from the source s to the reflector F is equal to
that sensed from F to the receiver g. Write the 1-way vertical traveltime
to the reflector F at depth d as τ(0) =∑ i

NΔτi, and the traveltime equa-
tion for multilayered media is given as

τ xð Þ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ 0ð Þ2 þ x2=v2RMS

q
ðA:11Þ

where x is a 1-way offset, e.g., PE in Fig. 1a. By introducing an effective
depth

deff ¼ τ 0ð ÞvRMS; ðA:12Þ



146 Y. Huang, G.T. Schuster / Journal of Applied Geophysics 107 (2014) 137–148
we can rewrite Eq. (A.11) as

τ xð Þ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2eff þ x2

q
vRMS

: ðA:13Þ

This expression, which applies to every τ term in Eq. (A.9), coincides
with the case of constant velocity vRMS and reflector depth deff. Therefore,
for the horizontal resolution at the reflector, the previous resolution
analysis based on a constant medium can apply to multilayered media,
with the transformations that

λ→λRMS ¼ vRMS= f 0; ðA:14Þ

d→deff ¼ vRMS

XN
i

Δτi; ðA:15Þ

where f0 is the dominant frequency of the source wavelet. Undergo-
ing such transformations, the effective geometry in Fig. 1a will change.
Specifically,

Leff ¼def sgeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 4d2eff

q
; ðA:16Þ

θeff ¼ arctan 2deff=Xð Þ; ðA:17Þ

while c remains as 0 for this reflection geometry. The corresponding aeff
and beff can be computed from Eqs. (A.7) and (A.8). Finally, Eq. (A.3) can
be used to compute the horizontal resolution as desired.

Appendix B. Resolution limits for imaging diving wave residuals

The resolution limits for imaging diving wave residuals are rigorously
derived by multiplying the migration kernel in Fig. 4a by the expression
for the diving wave arrival

δd gð jsÞ ¼ ω4
Z

Ω
G gjyð ÞdirG yjsð Þdirδm yð Þdy2;

ðB:1Þ

where the integral over themodel-space regionΩ is approximated by the
one over the region Ωgs. Here, Ωgs coincides with the yellow first Fresnel
zone of the diving wave in Fig. 4a for the source–geophone pair denoted
by s and g. This approximation recognizes that only model perturbations
within the first Fresnel zone of the diving wave will strongly affect the
timing and/or amplitude of the diving wave arrival at g.

Plugging Eq. (B.1) into Eq. (6) gives

δm xð Þmig ¼ ω4
Z

Dro

Z
Ωgs

G gjxð ÞdirG xjsð Þdir
h i�

G gjyð ÞdirG yjsð Þdir δm yð Þdy2dxgdxs:

ðB:2Þ

We now assume a localized sub-wavelength perturbation δm(y)
centered at ro = (xo, zo) that is non-zero only within a fraction of a
wavelength from ro. In this case, the range of source–geophone pairs
in D is restricted to the set Dro of source–geophone pairs that allow for
first Fresnel diving wavepaths to visit the localized perturbation cen-
tered at ro. These source–geophone pairs are the only oneswhose trans-
mitted diving waves9 will be significantly influenced by the model
9 We exclude the casewhere the scatterer–divingwave interaction produces significant
diffractions, so that all source–geophone pairs see significant diffraction energy, not just
changes in the diving wave arrival. This would be the case where the scatterer only has
a velocity contrast but no impedance contrast.
≈ω4
Z

Ωgs

G gjyð ÞdirG yjsð Þdirδm yð Þdy2;

perturbations centered at ro. For example, if the image point is at y
and the geophone is at C in Fig. 6b, thenDro is limited to the sources be-
tween A and B.

For a smooth background velocity, we assume the following asymp-
totic Green's function for the migration and data kernels

G xjyð Þdir ¼ Axye
−iωτxy ; ðB:3Þ

so that Eq. (B.2) becomes

δm xð Þmig ¼ ω4
Z

Dro

Z
Ωgs

AsxAgxAsyAgy e
iω τgxþτsx−τgy−τsyð Þ δm yð Þdy2dxgdxs:

ðB:4Þ

Here, τxy is the traveltime for the transmitted wave to propagate
from y to x, and Axy is its attendant geometrical spreading term that sat-
isfies the transport equation.

Assuming that the sub-wavelength scatterer represented by δm(y)
is located within a fraction of a wavelength from the trial image point
at x, then τsy, τgy, τsx, and τgx, can be expanded about its center point
ro to give

τsy≈τsro þ∇τsro � y−ro½ �;
τgy≈τgro þ∇τgro � y−ro½ �;
τsx≈τsro þ∇τsro � x−ro½ �;
τgx≈τgro þ∇τgro � x−ro½ �:

ðB:5Þ

Inserting these approximations into Eq. (B.4) gives

δm xð Þmig≈ω4
Z

Dro

Z
Ωgs

AsxAgxAsyAgye
−iω ∇τgroþ∇τsroð Þ� y−x½ � δm yð Þdy2dxgdxs:

Under the far-field approximation, the geometric spreading terms
can be taken outside the integral to give

δm xð Þmig ¼ ω4
Z

Dro

AsxAgxAsro
Agro

Z
Ωgs

e−iω ∇τgroþ∇τsroð Þ� y−x½ � δm yð Þdy2dxgdxs:

ðB:6Þ

Here, the gradient of the traveltimefield∇τsro is parallel to the direct
wave's incident angle at ro, so, according to the dispersion equation,
ω∇τsro ¼ ksro can be identified as the source-to-scatterer point wave-
number vector ksro ; similarly, the geophone-to-scatterer wavenum-
ber is denoted as ω∇τgro ¼ kgro . This means that, by definition of
the Fourier transform with a restricted domain of integration δM kð Þ ¼
∫
Ωgs

e−ik�yδm yð Þdy2, Eq. (B.6) becomes

δm xð Þmig≈ω4A4
sogoro

Z
Dro

ei kgroþksroð Þ�x δM kgro
þ ksro

� 	
dxgdxs; ðB:7Þ

where Asogoro
approximates the geometrical spreading for the scatterer at

ro with the range of allowable source–geophone pairs centered around
the pairs denoted by sogo, the Fourier spectrum of the model is given by
δM(k), and the model wavenumber components k= (kx, kz) are

kx ¼ ksxo þ kgxo ¼ ωs roð Þ sinβsro
þ sinβgro

� 	
;

kz ¼ kszo þ kgzo ¼ ωs roð Þ cosβsro
þ cosβgro

� 	
;

ðB:8Þ

where βsro
and βgro

denote the incidence angles of the source and
geophone rays, respectively, at the scatterer's location y = (xo, zo). As
shown in this appendix, these incidence angles are implicit functions of
the source (xs, 0), geophone (xg, 0), and scatterer ro=(xo, zo) coordinates.
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The determinant of the Jacobian in Eq. (C.2) (see Appendix C) can be
used to map the dxgdxs integration in Eq. (B.7) to a dkxdkz integration:

δm xð Þmig ¼ ω4A4
sogoro

Z
Dro

e−ik�x δM kð Þ J−1dkxdkz; ðB:9Þ

where Dro
is the set of wavenumbers that Eq. (B.8) maps from the

source–geophone pairs inDro
for the scatterer at ro, and J is the determi-

nant of the Jacobian matrix in Eq. (C.2).

Appendix C. Determinant of a Jacobian matrix

The transformation between the data coordinates (xg, 0), (xs, 0) and
kx; kzð Þ ¼ ksxo þ kgxo ; kszo þ kgzo

� �
is given by

dkx
dkz


 �
¼

∂kx
dxg

∂kx
dxs

∂kz
∂xg

∂kz
∂xs

2
6664

3
7775 dxg

dxs


 �
; ðC:1Þ

where the 2 × 2 matrix is the Jacobianmatrix. The scaled determinant J
of the Jacobian matrix is given by

J ¼ ω4 ∂kx
dxg

∂kz
∂xs

−∂kx
dxs

∂kz
∂xg

�����
�����; ðC:2Þ

so that dkxdkz= Jdxgdxs. In the case of a homogeneousmediumwith ve-
locity c and a scatterer at ro = (xo, zo), the model wavenumbers are

kx ¼
ω xo−xg
� 	

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xo−xg

� 	2 þ z2o

r þ ω xo−xsð Þ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xo−xsð Þ2 þ z2o

q ;

kz ¼
ωzo

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xo−xg

� 	2 þ z2o

r þ ωzo

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xo−xsð Þ2 þ z2o

q ;

ðC:3Þ

so that the partial derivatives of the wavenumbers can be easily deter-
mined. For a heterogeneous medium, the derivatives can be approxi-
mated by finite-difference approximations to the first-order
derivatives and the wavenumbers can be computed by a ray tracing
method. Under the far-field approximation z ≫ L, where L is the aper-
ture width of the source–geophone array, so Eq. (C.3) becomes

kx≈
ω xo−xg
� 	
czo

þω xo−xsð Þ
czo

;

kz≈
2ω
c

;

ðC:4Þ

where the horizontal wavenumbers are now linear functions of the data
variables xg and xs. Thismeans that Eq. (B.7) represents the inverse Fouri-
er transform of the model spectrum.
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